An HPC Breakthrough with Argonne National Laboratory, Intel, and Cray

At a press event on April 9, representatives from the U.S. Department of Energy announced they awarded Intel contracts for two supercomputers totaling (just over) $200 million as part of its CORAL program. Theta, an early production system, will be delivered in 2016 and will scale to 8.5 petaFLOPS and more than 2,500 nodes, while the 180 PetaFLOPS, greater than 50,000 node system called Aurora will be delivered in 2018. This represents a strong collaboration for Argonne National Laboratory, prime contractor Intel, and sub-contractor Cray on a highly scalable and integrated system that will accelerate scientific and engineering breakthroughs.


Rendering of Aurora

Dave Patterson (President of Intel Federal LLC and VP of the Data Center Group), led the Intel team on the ground in Chicago; he was joined on stage by Peter Littlewood (Director of Argonne National Laboratory), Lynn Orr (Undersecretary for Science and Energy, U.S. Department of Energy), and Barry Bolding (Vice President of Marketing and Business Development for Cray). Also joining the press conference were Dan Lipinski (U.S. Representative, Illinois District 3), Bill Foster (U.S. Representative, Illinois District 11), and Randy Hultgren (U.S. Representative, Illinois District 14).


Dave Patterson at the Aurora Announcement (Photo Courtesy of Argonne National Laboratory)

This cavalcade of company representatives disclosed details on the Aurora 180 PetaFLOPS/50,000 node/13 Megawatt system. It utilizes much of the Intel product portfolio via Intel’s HPC scalable system framework, including future Intel Xeon Phi processors (codenamed Knights Hill), second generation Intel Omni-Path Fabric, a new memory hierarchy composed of Intel Lustre, Burst Buffer Storage, and persistent memory through high bandwidth on-package memory. The system will be built using Cray’s next generation Shasta platform.

Peter Littlewood kicked off the press conference by welcoming everyone and discussing Argonne National Laboratory – the mid west’s largest federally funded R&D center fostering discoveries in energy, transportation, protecting the nation and more. He handed off to Lynn Orr, who made the announcement of the $200 million contract and the Aurora and Theta supercomputers. He discussed some of the architectural details of Aurora and talked about the need for the U.S. to dedicate funds to build supercomputers to reach the next exascale echelon and how that will fuel scientific discovery, a theme echoed by many of the speakers to come.

Dave Patterson took the stage to give background on Intel Federal, a wholly owned subsidiary of Intel Corporation. In this instance, Intel Federal conducted the contract negotiations for CORAL. Dave touched on the robust collaboration with Argonne and Cray needed to bring Aurora on line in 2018, as well as introducing Intel’s HPC scalable system framework – a flexible blueprint for developing high performance, balanced, power-efficient and reliable systems capable of supporting both compute- and data-intensive workloads.

Next up, Barry Bolding from Cray talked about the platform system underpinning Aurora – the next generation Shasta platform. He mentioned that when deployed, Aurora has the potential to be one of the largest/most productive supercomputers in the world.

And finally, Dan Lipinski, Bill Foster and Randy Hultgren, all representing Illinois (Argonne’s home base) in the U.S. House of Representatives each gave a few short remarks. They echoed Lynn Orr’s previous thoughts that the United States needs to stay committed to building cutting edge supercomputers to stay competitive in a global environment and tackle the next wave of scientific discoveries. Representative Hultgren expressed very succinctly: “[The U.S.] needs big machines that can handle big jobs.”


Dan Lipinski (Photo Courtesy of Argonne National Laboratory)


Bill Foster (Photo Courtesy of Argonne National Laboratory)



Randy Hultgren (Photo Courtesy of Argonne National Laboratory)

After the press conference, Mark Seager (Intel Fellow, CTO of the Tech Computing Ecosystem) contributed: “We are defining the next era of supercomputing.” While Al Gara (Intel Fellow, Chief Architect of Exascale Systems) took it a step further with: “Intel is not only driving the architecture of the system, but also the new technologies that have emerged (or will be needed) to enable that architecture. We have the expertise to drive silicon, memory, fabric and other technologies forward and bring them together in an advanced system.”


The Intel and Cray teams prepping for the Aurora announcement

Aurora’s disruptive technologies are designed to work together to deliver breakthroughs in performance, energy efficiency, overall system throughput and latency, and cost to power. This signals the convergence of traditional supercomputing and the world of big data and analytics that will drive impact for not only the HPC industry, but also more traditional enterprises.

Argonne scientists – who have a deep understanding of how to create software applications that maximize available computing resources – will use Aurora to accelerate discoveries surrounding:

  • Materials science: Design of new classes of materials that will lead to more powerful, efficient and durable batteries and solar panels.
  • Biological science: Gaining the ability to understand the capabilities and vulnerabilities of new organisms that can result in improved biofuels and more effective disease control.
  • Transportation efficiency: Collaborating with industry to improve transportation systems to design enhanced aerodynamics features, as well as enable production of better, more highly-efficient and quieter engines.
  • Renewable energy: Wind turbine design and placement to greatly improve efficiency and reduce noise.
  • Alternative programming models: Partitioned Global Address Space (PGAS) as a basis for Coarray Fortran and other unified address space programming models.

The Argonne Training Program on Extreme-Scale computing will be a key program for training the next generation of code developers – having them ready to drive science from day one when Aurora is made available to research institutions around the world.

For more information on the announcement, you can head to our new Aurora webpage or dig deeper into Intel’s HPC scalable system framework.

© 2015, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others.