On the Ground at SC14: Opening Plenary Session and Exhibition Opening Gala

I felt a little like the lady from the old Mervyn’s commercials chanting, “OPEN, OPEN, OPEN” today while waiting for the Exhibition Gala at SC14. The exhibitor’s showcase is one of the most exciting aspects for Intel – we have a pretty large presence on the floor so we can fully engage and collaborate with the HPC community. But before we delve too deep into the booth activities, I want to step back and talk a little about the opening plenary session from SGI.

Dr. Eng Lim Goh, senior vice president and CTO at SGI, took the stage to talk about the most fundamental of topics: Why HPC Matters. While most of the world thinks of supercomputing as the geekiest of technology (my bus driver asked if I worked on the healthcare.gov site or did some hacking), we as an industry know that much of what is possible today in the world is enabled by HPC in industries as diverse as financial services, advanced/personalized medicine, and manufacturing.

Dr. Goh broke his presentation into a few parts: Basic needs, reducing hardships, commerce, entertainment and profound questions. He then ran through about 25 projects utilizing supercomputing, everything from sequencing and analyzing the wheat genome (7x the size of the human genome!) to checking postage accuracy for the USPS (half a billion pieces of mail sorted every day) to designing/modeling a new swimsuit for Speedo (the one that shattered all those world records in the Beijing Olympics). Dr. Goh was joined on stage by Dr. Piyush Mehrotra, from NASA’s Advanced Supercomputing Division, who was there to discuss some of the ground breaking research that NASA has done in climate modeling and the search for exoplanets (about 4,000 possible planets found so far by the Kepler Mission).

Increasing wheat yield by analyzing the genome

Earthquake simulations can help give advanced warning

The session closed with a call to the industry to make a difference and to remember that it’s great to wow a small group of people to secure funding for supercomputing, but it is also important to, in the simplest terms, “delight the many” when describing why HPC matters.

So why does HPC matter in the oil and gas industry? After Dr. Goh’s presentation, I finally headed into the showcase and to the Intel booth to talk to the folks from DownUnder GeoSolutions. The key to success in the oil and gas industry is minimizing exploration costs while maximizing oil recovery. DownUnder GeoSolutions has invested in modernizing its software—optimizing it to run heterogeneously on Intel Xeon and Intel Xeon Phi coprocessors. As a result, its applications are helping process larger models and explore more options in less time. DUG is the marque demo this year in the Intel booth, showing their software, DUG Insight, running on the full Intel technical computing portfolio, including workstations, Intel Xeon and Xeon Phi processors, Lustre, Intel Solid State Drives and Intel True Scale Fabric.

Above and below: DownUnder GeoSolutions demo

Of course, checking out the DUG demo isn’t the only activity in the Intel booth. There were also a couple of great kick off theater talks from Jack Dongarra discussing the MAGMA project, which aims to develop a dense linear algebra library and improve performance for co-processors and Pierre Lagier from Fujitsu on The 4 Dimensions of HPC Computing. He presented a use case for the running elsA CFD software package on Intel Xeon Phi co-processors and the performance gains they were able to see with some tuning and optimization.

Jack Dongarra on the MAGMA project

Pierre Lagier on elsA CFD

And speaking of optimization, the big draw of the night in the Intel booth was the opening round of the Parallel Universe Computing Challenge, which saw defending champs the Gaussian Elimination Squad from Germany taking on the Invincible Buckeyes from Ohio. After a round of 15 HPC trivia questions (more points the faster teams answer), GES was in the lead. During the coding challenge, each team has 10 minutes to take a piece of code from Intel’s James Reinders and speed up either/both Xeon and Xeon Phi performance with 40 Xeon and 244 Xeon Phi threads available on a duel-socket machine. With a monster speed up of 243.008x on Xeon Phi (James admitted he’d only gotten to 189x), the Gaussian Elimination Squad took home the victory by a final score of 5903 to 3510. A well-played match by both teams!

Crowd watching the PUCC

L to R: Gaussian Elimination Squad, James Reinders and Mike Bernhardt

The PUCC continues on Tuesday, along with the Community Hub discussions, theater talks, fellow traveler tours and technical sessions. Stop by the booth (1315) and tell us why you think HPC matters!